Genetic algorithm wrapped Bayesian network feature selection applied to differential diagnosis of erythemato-squamous diseases
نویسندگان
چکیده
a r t i c l e i n f o a b s t r a c t This paper presents a new method for differential diagnosis of erythemato-squamous diseases based on Genetic Algorithm (GA) wrapped Bayesian Network (BN) Feature Selection (FS). With this aim, a GA based FS algorithm combined in parallel with a BN classifier is proposed. Basically, erythemato-squamous dataset contains six dermatological diseases defined with 34 features. In GA–BN algorithm, GA makes a heuristic search to find most relevant feature model that increase accuracy of BN algorithm with the use of a 10-fold cross-validation strategy. The subsets of features are sequentially used to identify six dermatological diseases via a BN fitting the corresponding data. The algorithm, in this case, produces 99.20% classification accuracy in the diagnosis of erythemato-squamous diseases. The strength of feature model generated for BN is furthermore tested with the use of Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Simple Logistics (SL) and Functional Decision Tree (FT). The resultant classification accuracies of algorithms are 98.36%, 97.00%, 98.36% and 97.81% respectively. On the other hand, BN algorithm with classification accuracy of 99.20% is quite a high diagnosis performance for erythemato-squamous diseases. The proposed algorithm makes no more than 3 misclassifications out of 366 instances. Furthermore, FS power of GA is also compared with two alternative search algorithms, i.e. Best First (BF) and Sequential Floating (SF). The obtained results have all together shown that the proposed GA–BN based FS and prediction strategy is very promising in diagnosis of erythemato-squamous diseases.
منابع مشابه
Application of Machine Learning Techniques to Differential Diagnosis of Erythemato-Squamous Diseases
This paper is about the implementation of a visual tool for Differential Diagnosis of Erythemato-Squamous Diseases based on the classification algorithms; Nearest Neighbor Classifier (NN), Naive Bayesian Classifier using Normal Distribution (NBC) and Voting Feature Intervals-5 (VFI5). This tool enables the doctors to differentiate six types of ErythematoSquamous Diseases using clinical and hist...
متن کاملPii: S0957-4174(99)00049-4
This paper presents an expert system for differential diagnosis of erythemato-squamous diseases incorporating decisions made by three classification algorithms: nearest neighbor classifier, naive Bayesian classifier and voting feature intervals-5. This tool enables doctors to differentiate six types of erythemato-squamous diseases using clinical and histopathological parameters obtained from a ...
متن کاملAn ensemble of classifiers for the diagnosis of erythemato-squamous diseases
A new ensemble of support vector machines (SVM) based on random subspace (RS) and feature selection is developed and applied to the problem of differential diagnosis of erythemato-squamous diseases. Each classifier has a ‘‘favourite’’ class. To find the feature subset for the classifier Di with ‘‘favourite’’ class wi, we calculate the best features to discriminate this class (wi) from all the o...
متن کاملLearning differential diagnosis of erythemato-squamous diseases using voting feature intervals
A new classification algorithm, called VFI5 (for Voting Feature Intervals), is developed and applied to problem of differential diagnosis of erythemato-squamous diseases. The domain contains records of patients with known diagnosis. Given a training set of such records, the VFI5 classifier learns how to differentiate a new case in the domain. VFI5 represents a concept in the form of feature int...
متن کاملDetermining the effective features in classification of heart sounds using trained intelligent network and genetic algorithm
Heart diseases are among the most important causes of mortality in the world, especially in industrial countries. Using heart sounds and the features extracted from them are among the non-aggressive diagnosis and prognosis methods for heart diseases. In this study, the time-scale, Cepstral, frequency, temporal and turbulence features are saved and extracted from the heart sounds, and then they ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Digital Signal Processing
دوره 23 شماره
صفحات -
تاریخ انتشار 2013